AFRL-IF-WP-TM-2002-1567

THE CARNEGIE MELLON
UNIVERSITY INSERT PROJECT

John Lehoczky

Lui Sha

Bruce Krogh

Peter Feiler
Ragunathan Rajkumar

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

FEBRUARY 1997

Final Report for 01 October 1996 — 28 February 1997

————————————— e ——————
e ———————————————

Approved for public release; distribution is unlimited.

INFORMATION DIRECTORATE 2 0030 1 2 1 1 2 0

AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

KENNETH LITTLEJOAN]gEs S. WILLIAMSON, Chief

Project Engineer Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

W B BT
WALTER B. HARTMAN
Acting Wright Site Coordinator
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

REPORT DOCUMENTATION PAGE onorm Approved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE
February 1997 Final

3. DATES COVERED (From - To)
10/01/1996 — 02/28/1997

5a. CONTRACT NUMBER
F33615-96-2-1948

4. TITLE AND SUBTITLE
THE CARNEGIE MELLON UNIVERSITY INSERT PROJECT

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62301E

6. AUTHOR(S) 5d. PROJECT NUMBER
John Lehoczky, Lui Sha, Bruce Krogh, Peter Feiler, and Ragunathan Rajkumar ARPA

Se. TASK NUMBER
AA

5f. WORK UNIT NUMBER
18

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
Information Technology Office

3701 North Fairfax Drive

Arlington, VA 22209-2308

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/IFTA

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Information Directorate
Air Force Research Laboratory

Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7334

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-IF-WP-TM-2002-1567

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT (Maximum 200 Words)
This document constitutes the final report to the revised Statement of Work for the Carnegie Mellon University Incremental

Software Evolution for Real-Time Systems (INSERT) project under the DARPA Evolutionary Design for Complex Software
(EDCS) Program. :

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

* 17.LIMITATION

18. NUMBER OF|

19a. NAME OF RESPONSIBLE PERSON (Monitor)

OF ABSTRACT: PAGES o
a. REPORT | b. ABSTRACT | c. THIS PAGE SAR 22 Kenneth Littlejohn
Unclassified | Unclassified | Unclassified 19b. TELEPHONE NUMBER (/nclude Area Code)
(937) 255-6548 x3587

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

l . .

FINAL REPORT
The Carnegie Mellon University INSERT Project
Contract Number F33615-96-2-1948

October 1, 1996 to February 28, 1997
John P. Lehoczky, PI: jpl@stat.cmu.edu
Lui Sha: lrs@sei.cmu.edu
Bruce Krogh: krogh@ece.cmu.edu
Peter Feiler: phf@sei.cmu.edu
Ragunathan Rajkumar: raj@sei.cmu.edu

Abstract

This document constitutes the final report to the revised Statement of Work for the Carnegie
Mellon University INSERT Project under the DARPA EDCS Program as described in Appendix
1. The period covered is October 1, 1996 to February 28, 1997.

Task 1: Application Independent Run-Time Capabilities
During this five month period, CMU will begin work on Subtasks 1.1, 1.2 and 1.4.

Subtask 1.1
CMU will begin research to develop the fault tolerant publisher/subscriber inter-process commu-
nications abstraction.

Objective

Providing flexible real-time fault tolerant group communication mechanisms is an important IN-
SERT task. The goal of this task is to extend the existing real-time publisher/subscriber mechanism
in the existing Simplex architecture to ensure that the states of the distributed components of the
real-time publisher/subscriber will remain consistent even in the event of a crash or other failures
of nodes.

Summary of current progress to date

The INSERT team has completed an initial API definition and ported the existing real-time publi-
cation subscription group communication software to LynxOS 2.4, a POSIX.1b compliant OS. The
distributed real-time publisher/subscriber communication model is now supported by a processor

membership protocol which allows a node in the system to fail, or to rejoin the system later. When

a node fails, all the publishers and subscribers on that node have to be deleted from the pub-
lisher /subscriber information maintained by the middleware layer. When a node tries to rejoin, the
current state information about the publishers/subscribers must be transferred to the node before
it can integrate into the system. A two-phase protocol is used to ensure that the state information
from the requested node is transferred in consistent fashion (since the information can be changing
when the transfer happens). The message distribution list for distributed group communication
is currently undergoing further evaluation in the context of real-time control experiments. Other
areas to be completed in the publisher/subscriber model include:

¢ Information query support: Interrogation of message distribution lists information.

e Checkpointing: Distributed checkpointing and recovery for message distribution list.

ST e
N f W ’3‘;

e Statistics collection: Detailed error progress to date about information for multicast sends.

Finally, we are making significant enhancements to the publisher/subscriber communication model
to address the following lack of flexibility in the publisher/subscriber communication model.

e Information consumers need not be running and consuming information at the same rate as
the information producers, and

e The publisher/subscriber communication model is synchronous: a subscriber must be listen-
ing in order to receive messages by a publisher.

Both these constraints will be relaxed by a real-time push-pull communication model, which will
be a powerful generalization of the real-time publisher/subscriber communication model. The real-
time push/pull communication model enables new components with higher or lower capabilities to
be inserted into a current system without requiring the existing information publishers to change.
This yields significant benefits in the design, development and deployment stage of an evolving long-
lived system. Crash-failures of nodes can be detected and recovered from. This yields robustness
and satisfaction of critical functionality at run-time (since the capability of the system evolves at
run-time due to node failure or due to node recovery).

A detailed design of the real-time push=pull model and an application programming interface have
been developed. The processor membership protocol, which allows node failures to be tolerated, is
a largely orthogonal aspect enabling quick integration into the future. A description of this general
model is presented in the appendix.

Subtask 1.2

Objective:

CMU will develop the initial design of a distributed clock synchronization scheme for use in the
INSERT middleware. The finalization and implementation of the design will be done under the
follow-on contract.

Summary of current progress to date:

A distributed clock synchronization scheme based on Flaviu Cristian’s algorithm has been imple-
mented in LynxOS. Cristian’s algorithm is probabilistic if the communication delays between nodes
do not have bounded (or deterministic) delays. Since the INSERT testbed is generally closed with
only controlled tasks in the system, we assign an appropriately high priority to the clock syn-
chronization daemon on each node. We therefore obtain not only deterministic delays (bounded
worst-case delays) but also very low delays by the use of a high-bandwidth switched network.

Subtask 1.4

Objective
CMU will initiate collaborations with other EDCS contractors in the High Assurance Cluster and
in the Run-time Correction Preservation Affinity Group.

Summary of current progress to date

The EDCS program has been divided into five distinct project clusters, and the CMU INSERT
project is participating in the High Assurance and Real-Time Cluster. Cluster participants
met twice during the contract period with a third meeting schedule for April 1-2, 1997.

2

The first Cluster meeting was held in July 1996 at the initial annual EDCS meeting. At that
meeting, the Cluster participants as well as many investigators involved in formal methods research
described their individual research projects. Then, cluster participants worked to develop a broad
scenario within which all project could contribute. This scenario involved aspects of the entire
lifecycle of system evolution. The INSERT Project was especially concerned with three aspects:
(1) the development of technology to support on-line upgrades along with the development of
a safety net which would protect the system should the upgraded modules fail, (2) dependency
tracking technology to determine all the changes that must be made when one part of the system is
changed and (3) factorial testing methodology to permit an entire test sequence to be performed,
even if a failure occurs in any part of the sequence.

Further developments occurred at the second cluster meeting held on October 9-10, 1996 in Dallas.
At this meeting, the INSERT F-16 vignette was proposed for adoption as the cluster vignette against
which all projects could work. The cluster meeting also presented an opportunity for discussions
among various project personnel to find avenues for cooperation. Preliminary discussions with
Honeywell took place, and the possibility of INSERT using Honeywell’s Meta-H and Control-H
for dependency tracking was explored. Separately from the Cluster meetings, INSERT personnel
continue to cooperate closely with Carol Hoover of the CMU METAPHOR project.

In addition to the cluster meetings, the INSERT project is an Integrating project in the cluster,
that is it will provide a vehicle for certain selected EDCS projects to demonstrate their technology.
Two Project Integrator Meetings were held during the contract period, on in December 1996 and a
second in February 1997. As a consequence of all this cluster and integrator activity, it now appears
that CMU will either collaborate with or integrate technology from the Honeywell Meta-H project
(for dependency tracking), the CMU METAPHOR project (for change analysis and composable
real-time software), David Garlan and Daniel Jackson of CMU for formally describing INSERT
using architectural descriptions languages and Bob Balzer of USC-ISI on the use of instrumented
connectors. Discussions with Lee Osterweil, Lori Clark, Debra Richardson and Michael Young on
integrating various aspects of testing methodology are on-going.

Task 2: Avionics Domain-Specific Components
During this contract period, CMU will begin work on Subtasks 2.1 and 2.4.

Subtask 2.1
Development of a formal model for the INSERT runtime switching logic.

Objective

INSERT supports the reliable online upgrade of controllers. The switching logic is a rule for
switching the controllers based on the behavior of the physical system to be controlled. It is the
key element to guarantee the safe upgrade by evaluating two aspects of the new controller: 1)
Does the physical system under the new controller perform within the domain in which the safety
controller can handle in case a fault occurs? and 2) Does the new controller result in a satisfactory
performance of the physical system? The current focus of this work is to develop systematic
approaches to derive control switching logic. This amounts to abstracting the runtime continuous
dynamics of the physical system into discrete descriptions. There is no standard methodology that
one can follow to work out such abstraction, but different areas in dynamics and control theory
need to be investigated.

Summary of progress to date

We have been focusing on systematically developing safety switching rules, i.e., the logic which
leads to control switching from the new controller to the safety controller when a fault due to the
upgrade is detected. Specifically, we formally define the notion of safety region and safety control,
the safety of the physical system, and controller’s operational region. The development of control
switching logic or the abstraction of the continuous dynamics in terms of safety then allow one to
identify the safety region of the physical system and to design the safety controller to maintain
the state of the physical system inside the safety region. Towards this end, three approaches were
examined.

Design the safety controller as time-optimal
Control Goal: Driving the physical system to a prescribed region in the minimum time and subject
to state constraints.

Safety Criterion: If the control goal can be reached from a given state, that physical system is safe
at that state. Otherwise it is unsafe.

Safety check implementation: the nonlinearity in the physical systems makes the evaluation of the
safety criterion difficult to be carried out in practice. There are two approximations can be applied
to address this problem '

e Conservative linearization: we (piecewisely) linearize the physical system in such a way that
if the linearized system satisfy the safety criteria, so will the nonlinear system.

e Real-time simulation: when the simulation computation is faster than the dynamics of the
physical system, it is possible to use simulation to determine if the control goal can be
achieved.

Design the safety controller as stabilization control

Control Goal: Stabilize the physical system at an equilibrium state using state feedback control
and subject it to state and control constraints. This is achieved in three steps. First, design a
stabilization controller with a Lyapunov function which describes the domain of attraction (DOA).
Second, identify the intersection of the set of admissible states derived from the limits of the control
and the set of admissible states obtained from the state constraints. Finally, adjust the parameter
of the Lyapunov function such that the DOA just fits inside the intersection.

Safety Criterion: The physical system is safe if its state is inside the DOA. Otherwise it is unsafe.
Neural-Network-Based Switching Rules

To generate run-time switching rules automatically, we are investigating the application of neu-
ral networks which can “learn” the regions of stability and the performance indices for different
controllers. Simulation examples have demonstrated the viability of this approach, and hardware
experiments are being implemented. Two conference papers have been written describing this
research direction.

While the first approach does not result in an explicit safety region, it generates the largest set
of safe states of the physical system. On the other hand, the second approach gives a closed-form
analytical expression of the safety region, but such region may be somewhat conservative. We

4

have successfully implemented the algorithm developed from both approaches in a navy control
application, i.e., a diver control system, and we expect to apply them to avionic control systems to
establish the INSERT run-time switching logic.

Subtask 2.4

CMU will investigate systematic methods for constructing reduced-order models of complex non-
linear dynamics.

Objective

The INSERT architecture for real-time control applications leads to the complex interaction of
switching control logic with continuous control loops. The dynamics are nonlinear in many respects,
not simply because of possible nonlinearities in the process being controlled. There are currently
no general methods for analyzing the properties of such systems, yet it is essential to be able
to analyze and verify the properties of INSERT-based control implementations. There is also no
existing methodology for defining the run-time switching rules. Methods need to be developed
to create reduced-order models of the complex nonlinear dynamics so that switching rules can be
defined and analysis can be performed for applications of the INSERT technology.

Summary of current progress to date

Hybrid System Modeling Tools

The interaction of switching with continuous control loops creates so-called hybrid systems. Only
recently have computer modeling tools began to emerge that provide adequate representations of
both continuous and discrete dynamics in an integrated package. We have initiated work using the
MATLAB/SIMULINK tool that has a new finite-state machine capability to build complex models
of the dynamics that arise in INSERT applications. We have constructed and simulated examples
of the run-time switching rules for the inverted pendulum example to become familiar with this
tool.

We also investigated the use of qualitative differential equations as a method for modeling processes
being controlled with the INSERT run-time system. QSIM, a tool from UT Austin, performs
qualitative simulations and analysis of such models. From our investigations and experiments, it
appears that the analysis one can perform with this tool is much too conservative to be of value
in serious applications. Some of the fundamental concepts may be useful, however, in developing
more relevant reduced-order models of the nonlinear dynamics in INSERT applications.

" As a fundamental approach to reduced-order model analysis, we are advocating the development
of finite-state models of the continuous dynamics which can be coupled to and analyzed with the
switching logic in an INSERT run-time environment. Towards that end, we have begun explor-
ing techniques for generating finite-state models directly from the continuous state equations. Two
techniques currently under investigation are: (i) the generation of outer approximations for the con-
tinuous dynamic flows; and (ii) a partial differential equation technique for propagating switching
thresholds in the continuous domain.

Neural-Network-Based Switching Rules

To generate run-time switching rules automatically, we are investigating the application of neu-
ral networks which can “learn” the regions of stability and the performance indices for different
controllers. Simulation examples have demonstrated the viability of this approach, and hardware
experiments are being implemented. Two conference papers have been written describing this

research direction.

Possible methods to simplify the model of the complex nonlinear systems:
1. Coordinate transformation to decouple the complex nonlinear dynamics.
2. Introduce state feedback to linearize the decoupled nonlinear systems.

3. Linearize the nonlinear dynamics at an equilibrium state.

Methods 1 and 2 have been successfully applied in studying complex aircraft dynamics, and we
expect to use them in avionic control systems as well. Method 3 is the standard approach to deal
with nonlinear systems, and we may find some use for it in case Methods 1 and 2 do not work.

Task 3: Dependency Analysis Methods and Tools

Subtask 3.1

CMU will investigate current methodologies available for design dependency tracking. CMU will
also contact other EDCS contractors to investigate potential collaborations on this topic and begin
the assessment of tools which are already available or will become available within an 18 month
period.

Objective

The INSERT architecture allows components to be replaced incrementally and online. Furthermore,
in case of failure of such a component the safety-net switching rules will safely revert to the baseline
component. Such changes have impact on other parts of the system in terms of timing, resource,
and semantic dependencies. The purpose of this subtask is to assess these methods and tools
for their capability and limitation to address the stated problem, and for their consideration as
prototyping platform to overcome the limitations.

Summary of current progress to date
Our approach is to determine an initial set of modeling requirements, and to assess existing methods
and tools in light of these requirements.

First, we examined the modeling requirements. Schedulability and resource dependency issues are
addressed at the granularity of processes, communication connections, and shared objects, i.e.,
at the level of implementation architectures. Semantic dependencies require some aspects of the
application domain to be captured that facilitate impact analysis in terms of the feedback control
system domain as well. Two major types of controllers can be identified: continuous controllers,
and supervisory controllers. Continuous controllers are based on a set of control equations. Super-
visory controllers model discrete states and events and are used to represent operation sequencing
and operational modes. INSERT technology extends the concept of mode, i.e., the ability to dy-
namically switching between predetermined sets of operational capabilities, by supporting runtime
replacement of components. Modeling notations need to accommodate analysis of consistent system
configuration variants. In summary, the modeling capabilities need to be able to capture semantic
information associated with components of control systems, to identify consistent combinations
of component variants, and relate them to the implementation domain in terms of processes and
communication connections in the realm of hard real-time applications.

We proceeded with a hands-on evaluation of two candidates of Architectural description languages
(ADL): Rapide by Stanford University, and Meta-H by Honeywell. The evaluation was accom-

plished by modeling INSERT specific concepts and by investigating necessary extensions to ac-
commodate these concepts. Rapide represents a general architectural description language with
emphasis on structural modeling, and event-based behavioral modeling based on partially ordered
sets. Its focus is on modeling and analysis of software system architectures. In contrast, Meta-H
and its tool support focuses on supporting the development of hard real-time systems, in particular
in the domain of guidance and control. Meta-H models software system architectures in terms of
processes with real-time characteristics and their interaction in terms of communication, events,
and alternative configurations in terms of interconnected sets of processes. Its toolset support both
analysis and synthesis. The analysis capability in Meta-H includes validation of interface proper-
ties as well as schedulability analysis, including sensitivity analysis (i.e., it takes into consideration
possible variation in execution time), of set of processes. Their mapping onto particular hardware
architectures is also specified in Meta-H. The synthesis component is able to generate an runtime
infrastructure that correctly implements the specified scheduling constraints and communication
structures.

We modeled the uniprocessor implementation of the inverted pendulum. Due to the nature of
Rapide the resulting system model focused on the interaction protocol of several components of the
runtime system and the INSERT switching logic. Schedulability aspects could not be addressed.
Comprehending the power of the full language and applying it successfully has a high learning
curve. The toolset takes a traditional language compiler approach, i.e., a textual representation of
a system expressed in Rapide is processed for analysis by invoking the tool on a file. Extensions to
the toolset would have to be negotiated with the Rapide development team.

We then proceeded to examine the Honeywell toolset, consisting of Meta-H and Control-H as model-
ing languages, a Meta-H compiler, and Control-H compiler, and a graphical interactive editor front
end to both Meta-H and Control-H created through Meta-DOME. Meta-DOME is an interactive
graphical editor prototyping facility in an object-oriented environment, that allows instances of
editors for various languages to be developed interactively and for those editors to perform various
forms of analysis, generation of textual representations, and interfacing with other tools. Various
parts of the toolset have been in use by the Honeywell Technology, other parts of Honeywell, as
well as outside parties.

We modeled the process and communication pattern present in a set of analytically redundant
controllers in INSERT. In the process we were able to accomplish two things. First, we were able to
identify an application level abstraction for INSERT-based development referred to as Analytically
Redundant Component (ARC), which embodies the details of how to implement a collection of
analytically redundant controller variants and guarantee dependable operation. Second, we were
able to determine that Meta-H provides a good set of modeling concepts, but lacks the ability
to specify a delay in process start time, resulting in a conservative schedulability result. We have
identified work by Tindell at York University to overcome this shortcoming. We have demonstrated
that their algorithm can perform a more optimistic schedulability analysis. We have also shown
that the sensitivity analysis can be extended to the Tindell algorithm.

An initial examination of control system design languages revealed that notations for modeling
continuous control provide little explicit support for structuring. Honeywell’s toolset - integrating
Control-H and Meta-H - is a good illustration of how such a shortcoming can be compensated
for by combining such control engineering tools with software system engineering tools. Modeling

notations for supervisory control are typically based on state machines (Statecharts) or Petri nets
(DesignCPN, GrafCharts). Our interest in these notations is their ability to characterize the domain
architecture, i.e., capture the structure and interfaces between different components of a control
system, and how they can be integrated with capabilities focusing of implementation architectures.
We will be examining the GrafChart toolset from Lund University under the full contract.

For the purpose of determining an appropriate platform for prototyping of the dependency tracking
tool we have identified two candidates for evaluation: Meta-DOME, and G2. We will be investigat-
ing how Meta-DOME allows us to experiment with extensions to Meta-H to capture control domain
specific semantic information. G2 is the implementation platform for the GrafChart toolset. G2 is
a commercial product from GenSym in Boston and potentially provides a flexible environment to
extend GrafCharts and define new modeling capabilities. Both these candidate will be evaluated
as part of this subtask under the full contract.

Task 4: Avionic Applications Demonstrations

Objective

Task 4 will be primarily undertaken by Lockheed Martin Corporation. Nevertheless, CMU must
undertake preliminary work to make the Lockheed Martin demonstrations of the INSERT technol-
ogy feasible. Specifically, during the first three months, CMU will investigate the availability of
appropriate Ada Compilers for use in the demonstration, and CMU will create requirements for
the high performance but potentially faulty AMAS algorithm, and begin development of the Ada
source code for the current AMAS algorithm.

summary of current progress to date

Upon investigation of the requirements of the extended contract, and in order to leverage previously
performed work as much as possible, CMU has determined that Ada will not be used at this time
in the implementation of the INSERT infrastructure. The non-embedded avionics demonstrations,
where an external computer is interfaced with the avionics test-bench, will be performed in a
hybrid language environment using the native tasking environment of the external computation
system. Ada may be used to implement the AMAS control code, in order to maintain code level
compatibility with the extended contract, year 3 end result.

In the event that Ada will be used in a mixed language environment, GNAT (GNU Ada-95) will be
used to implement Ada language subroutines, which will be called from a non-Ada environment.
The feasibility of this approach has been demonstrated previously at CMU.

Progress on creating an implementation of the AMAS algorithms has not been possible, due to
contractual issues between CMU and Lockheed Martin Corporation (source material has been
unavailable).

In order both to have an accessible test environment (to attempt to minimize travel to the Lockheed
- Martin facility), and to support the EDCS demonstration days, it was decided to develop a portable
simulation / demonstration environment. The initial configuration of this environment will consist
of a Sun Sparc-5 computer, running a F-16 Block 50 simulation environment developed by USAF
Wright Labs. This simulation environment will contain the equations of motion, environment, and
avionics simulations (including cockpit controls and displays).

Connected to this simulation will be a PC class machine to lend INSERT functionality to the

system. This PC will communicate with the Sun F-16 simulation environment, and a commercial

grade F-16 cockpit controls set (such as the Thrustmaster F-16 FLCS system, consisting of rudder

pedals, stick and throttle components). Communications between the INSERT PC and the F-16

Sun simulation system shall logically replicate the interface with the Lockheed Martin Avionics
Test Bench as much as is practical.

The basic demonstration environment will thus consist of 3 computers. The Sun F-16 simulation
computer, the INSERT PC, and a Windows-95 PC that will interface to the cockpit controls
subsystem and communicate with the INSERT PC.

The initial demonstration environment is planned to consist of a demonstration of this simulation
environment. The INSERT PC is planned to perform 2 operations. It will pass cockpit control
information to the Sun simulation environment. It will also implement a pilot relief autopilot sys-
tem. This system will interface to the Sun simulation by modifying the cockpit control information.
This is similar to the method used by the AFTI F-16 to implement the autopilot coupling.

Possible extensions to this simulation environment include it’s integration with a Distributed In-
teractive Simulation “Stealth Viewer” system. This will extend the simulation environment and
allow visualization of the simulation environment. This visualization can include terrain, as well
as the relative locations of the F-16, weapons in flight, and any target of interest. This capability
will be most useful when it comes to demonstrating and evaluating the AMAS weapon delivery
algorithms, which will be implemented in Q3 and Q4 of 1997, as well as in outlying years.

Appendix 1:
A Brief Summary of CMU’s INSERT Program

Carnegie Mellon University, the Software Engineering Institute and Lockheed Martin Corporation
will develop INSERT (Incremental Software Evolution for Real-Time Applications). The package
will reduce the life-cycle development costs of complex, safety critical, real-time software appli- -
cations by permitting safe on-line upgrades of new software, even though the new software may
have residual errors. The INSERT capability package will facilitate a paradigm shift from today’s
approach of designing and testing for static requirements to a new approach of having a software
framework that can be efficiently reconfigured to meet changing requirements and can facilitate
the safe on-line insertion of new functionality. The INSERT package will be built on the Simplex
Architecture (SA) (developed by the SEI) which exploits analytic redundancy to achieve fault tol-
erance, the Data Fusion Integrity Process (DFIP) (developed by Wright Laboratory), generalized
rate monotonic scheduling, and other DARPA technologies. The SA exploits analytic redundancy
to achieve fault tolerance. The DFIP technology has demonstrated the ability to tolerate a wide
range of sensors faults and errors in processed sensor data. -

The INSERT package will have the following integrated components:

1. Management of software design dependencies with computer-aided tracking of timing, resource,
and semantic dependencies among components with respect to a given set of changes. Dependency
analysis will evaluate the transitive closure of proposed software changes so that the worst-case
impact will be known even before any software changes are attempted.

2. Distributed real-time middleware services to provide application-independent run-time and tool
support for safely reconfiguring the software modules comprising an application. Software modules
and their communications structure can be modified dynamically to respond to the changing needs
of the application and changes in the environment, thus extending the concept of late binding to
dynamic binding.

3. Dynamic real-time fault-management services which contain and manage faults so that at least
a critical baseline of services is provided at any given point in time. Dynamic firewalls will isolate
application modules from one another such that faults in changing software do not propagate.
Active software safety nets will monitor performance and perform model-based data verification.

The INSERT package will be demonstrated yearly in the Lockheed flight simulator in the context
of avionics applications. This class of applications is a single domain that contains many of the
characteristics that contribute to high system evolution costs (e.g., real-time requirements, resource
constraints, high assurance, high complexity and security).

e The Year 1 demonstration will provide implementations of the F-16 Automated Maneuver
and Attack System (AMAS) in parallel with different hosts.

e The Year 2 demonstration will add DFIP support and GUI visualization tools into the middle-
ware, and the switching logic will be extended to accommodate multiple computing modules.

e The Year 3 demonstration will provide a full-scale validation which will be used to validate the
complete physical integration of INSERT technology into a production software environment

10

with full implementation of dependency tracking. The INSERT middleware services will be
hosted completely within a multiprocessing avionics computer.

11

| | ‘ .

Appendix 2:
The Real-Time Push-Pull Communications Model

With the advent of networking technology, the demands for exchanging information over a dis-
tributed multiple processor environment are growing rapidly. Various types of information, such
as voice, video control data, sensor data, real-time intelligence data, and text, are being trans-
ported widely across today’s information and surveillance networks. Supporting these emerging
applications require state-of-the-art distributed and multiple processor systems with common re-
quirements such as timely processing, high availability, dynamic reconfigurability, scalability, global
information access etc.

One of the most interesting applications in the distributed real-time information distribution and
access domain is “Real-Time Push-Pull Communications.” The objective of this effort is to provide
a distributed infrastructure which enables a very flexible and powerful many-to-many communica-
tions model. Specifically, this will allow real-time processes on different machines to publish and
receive information in real-time in a location-independent and protocol-transparent way. End-to-
end timing guarantees can still be provided. This means that subscribers of particular message
streams (identified by a “distribution tag”), need not know the location of the information produc-
ers (publishers) who are publishing on that distribution tag. Similarly, the information producers
need not know who the information consumers (subscribers) are.

The Real-Time Publisher/Subscriber Communication Model

Throughout this project, the communication model will be based on the Real-Time Publisher/Subscriber
Communications model for communication between information producers (publishers), informa-
tion consumers (subscribers). A consumer can consume information from multiple sources, while a
producer can produce information for multiple consumers. A producer can also be a consumer and
vice-versa. A data channel represented by “a distribution tag” represents each category of data
that is available in the system. A publisher publishes on a distribution tag, and subscribers to that

tag can consume the information published on that tag. However, a publisher need not know who

the subscribers to its published information are, and a subscriber need not know who the publishers

of its consumed information are. In other words, the publisher-subscriber communication model
allows a general many-to-many communications model.

In the real-time publisher-subscriber communication model, timing delays for communications be-
tween an information producer and an information consumer are predictable, analyzable and effi-
cient. As may be expected, this analyzability is based on the assumption that the communication
demands are pre-defined or can be known using schemes such as admission control.

The implementation of the real-time publisher-subscriber communication model allows the infor-
mation about publishers and subscribers to be stored as close to the publisher as possible (namely
its own address space on its own node). This yields significant performance benefits. A distributed
fault-tolerant name-service hidden from the application interface allows the physical communica-
tions among publishers and subscribers to occur. This name-service allows processor nodes to fail
and/or to (re)join the system. When failures happen or when nodes (re)join, the naming ser-
vice continues to function and real-time publication/subscription on distribution tags continue to
function normally (except, of course, on the nodes that failed or are trying to join).

12

The Real-Time Push-Pull Communications Model

We are now working on a broader generalization of the real-time publisher/subscriber communica-
tion model, namely the Real-Time Push-Pull Communications Model.

The real-time publisher/subscriber communication model can be considered to represent “push
communications” where data is “pushed” by publishers. As a result, subscribers can obtain infor-
mation only at the rate at which data is being pushed. This is the current implementation of the
INSERT software architecture where the I/O sources, feedback controller modules and the semantic
checkers all must operate at the same frequency!. This can be very limiting in many cases where
different clients have different processing power and/or widely varying communication bandwidth
(because of connectivity to a low bandwidth network like a telephone modem or an encrypted
satellite link). If consumers did not have the same power, a publisher must either falsely assume
that they all have the same capability or publish two (or more) streams to satisfy consumers with
different capabilities.

It would be very desirable if a client with a relatively low processing power and/or communication
bandwidth is able to consume published data at its own preferred rate. In other words, the data
reaching this client depends on its own needs, and not that of the publishing volume/rate of the
publisher. Also, the real-time publisher/subscriber model is very synchronous: subscribers normally
block on a (distribution tag) port waiting for data to arrive, and publishers produce data at the
rates that they determine, and the published data is immediately sent to the subscribers on that
distribution tag.

The Push-Pull Communications model addresses both of the above concerns. It allows consumers on
the same data streams to receive and process data at independent (locally determined) rates. As a
result, client with high or low processing power and/or high or low network bandwidth can consume
data on a stream. In addition, this can happen without the knowledge of the data producers who
do not have to distinguish between the capabilities of the receiving consumers. In the push-pull
communication model, data can be either “pushed” by an information producer or “pulled” by an
information consumer. A “pulling” consumer can choose to consume data at a rate lower than
the data production rate. In the extreme, a pulling consumer can choose to only consume data
asynchronously.

The Real-Time Push-Pull Communications model adds predictability, analyzability and timing
guarantees to the push-pull communication model. This is accomplished by specifying the task
and communications parameters to be used, the use of real-time scheduling schemes (priorities and
synchronization protocols which bound and minimize priority inversion).

In addition, the real-time push-pull communications model adds the following interfaces.

Asynchronous Pull-Message
This call is used by a consumer to “pull” the latest message published by a particular publisher.
This call will also allow

e The consumer can specify the number of messages that should be pulled. By default, the

1 A subscriber may choose to operate at a different lower frequency by, for example, skipping every other published
datum on a subscribed tag. However, for this to happen, the subscriber must still receive and “consume” the datum
albeit in a trivial “drop-it” fashion.

13

‘ . . .

number of messages is 1, but more than 1 message can be pulled on demand.

e If there are multiple publishers on the distribution tag, the consumer can specify a particular
producer from which the message must be pulled.

Synchronous Pull-Message

This call is used by a consumer to “pull” the latest message published by a particular publisher
automatically at periodic intervals. Even if the publisher is publishing at a different (lower or
higher) rate, the middleware service will ensure that the latest messages on the tag published at
the time of needed consumption are delivered. This call will allow the following: will be consumed.

e The consumer can specify the period at which the messages should be received.

e The consumer can specify the number of messages that should be pulled. By default, the
number of messages is 1, but more than 1 message can be pulled on demand.

e If there are multiple publishers on the distribution tag, the consumer can specify a particular
producer from which the message must be pulled.

Store-Message

This call can be used explicitly by publishers to “store” a message to be “pulled” later by a
consumer. The underlying middleware infrastructure will store only a finite number of messages
based on the underlying implementation and available system resources.

Attributes of a Pull Tag
Each distribution tag now also has “Pull attributes” associated with it. These attributes can be
modified or queried by a publisher or a subscriber.

Publisher-Modify-Pull-Attribute

This call allows publishers to specify the “pull capabilities” on a distribution tag that must be
supported by the push-pull communications middleware services. For example, a publisher can
specify the maximum number of messages that can be stored for pulling by a consumer. The
publisher can also specify whether each message should be time-stamped and/or have a sequence
number.

Subscriber-Modify-Pull-Attribute

This call allows subscribers to specify the “pull capabilities” on a distribution tag that it expects to
“pull” information from. For example, a subscriber can specify the maximum number of messages
that need to be stored for its pulling. It must be noted that this maximum number of messages
that will be pulled by a subscriber can ezceed the maximum number of messages that were specified
by the publisher on that distribution tag. The implications of this feature are not always intuitive
and will be discussed next.

Query-Tag-Attribute
This call allows a publisher or subscriber to query the “pull” attributes specified on a distribution
tag by a publisher or subscriber.

Proxy Publishers
A new entity called a “Proxy Publisher” will be created in the real-time push-pull communication

14

model to cater to the special needs of “pull communications”. The “proxy” acts as an intermediary
between “push” and “pull”: it acts as a consumer to the publishers, and as a publisher to the pull
client. As a result, the publisher and pull client can actually have very different needs: processing
power, bandwidth requirements, message buffer size and rates of production and consumption.

As stated in the previous section, the consumer can actually “pull” more messages than are actually
requested for storage by a publisher. This is because the proxy publisher for the pull client can
store messages that are published by the producer and store the necessary number of messages to
satisfy the needs of the pull client.

Concluding Remarks :

We have generalized the real-time publisher-subscriber communications model to present a new
many-to-many communications model called the “real-time push-pull communications model.” The
real-time publisher-subscriber communications model can be considered to be “push technology”
where information producers are the initiators of message transmission, and information consumers
synchronize and must consume the information produced. “Pull communications” enables the
power of the “opposite direction” where the information consumers can specify and consume only
those messages that they want and only at the rates that they can consume (independent of the
rate at which the information is produced). This allows information sources and sinks with a wide
range of processing power, network bandwidth and synchronicity needs to co-exist within a single
system. The real-time aspects of the model involve the use of real-time scheduling and resource
management principles, appropriate priority assignment, specification and management of end-to-
end timing constraints, a priori scheduling analysis. As a result, a distributed system with very
general and powerful many-to-many real-time communications can be built such that the real-time
behavior of the system can be predictable, analyzable and guaranteed in advance.

Status
The design of the model is complete and implementation is in progress.

15

